

Workshop 1: Using Modelling to Inform Cannabis Policy

Dr Caitlin Hughes and Marian Shanahan Drug Policy Modelling Program

NCPIC 1st National Cannabis Conference, Sydney, 8-9 September 2009

The work is funded by: Colonial Foundation Trust, ARC

Outline

Models

What are they?Why use them?

Group exercise

Two models in more detail
 —Policy options for cannabis
 —Cannabis diversion model

What is a model?

- "representation of something, ...which is usually smaller than the real object, or a simple description of the object which might be used in calculations"
- A simplified depiction or abstraction of a complex system or process
- A model can be
 - -Complex or simple
 - A mental summary
 - Computer simulation

Some types of models

- Epidemic modelling HIV, Hep C, H1N1
- Systems dynamic models i.e. Markov
 - Stocks and flows
 - Feedback loops
 - Decision analytics
- Soft systems modelling
- Agent based modelling
- Economic models
 - Cost effectiveness analysis
 - Cost benefit analysis
 - Macro economic models

Examples from DPMP

- SimDrug & SimDrug Policing
- Pharmacotherapy Model
- Hepatitis C Model
- Cannabis Diversion Model
- Economic consequences of cannabis policy options

Why Modelling? A model S DPMP may:

- -Build knowledge (in the process)
- Be a summary of the complexities and dynamics
- Be used to evaluate programs or policies in the absence of other methods (anti-smoking programs)
- -Combine / sythesize existing knowledge
- -Generate new knowledge and insights

Why Modelling? A model may:

- -Be used in the face of different values (treatment versus law enforcement)
- Be a constructive mechanism to generate debate
- —Be used when we do not understand the process/system well enough already
- Identify the unintended consequences of modifying existing policy
- -Be used to explore a wide range of scenarios

Key Advantages

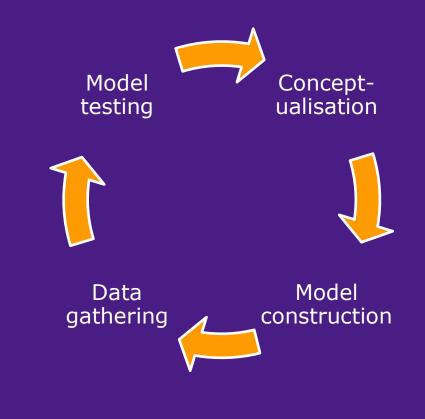
- Can evaluate policy options that cannot be trialled e.g. cannabis legislation
- Evaluate long term and multiple outcomes
- Helpful tool used to explore unintended/deleterious outcomes
- Opportunity to explore uncertainty
- Integration

Do models work?

Yes but....what is the model being used for?

- -Develop new understandings
- -- Understand policy options
- -Facilitate dialogue and debate
- -Test new policy options
- -Create better public policy
- -Inform decision making
- -Prediction
- Levels of evidence
- Generalisablity

Limitations

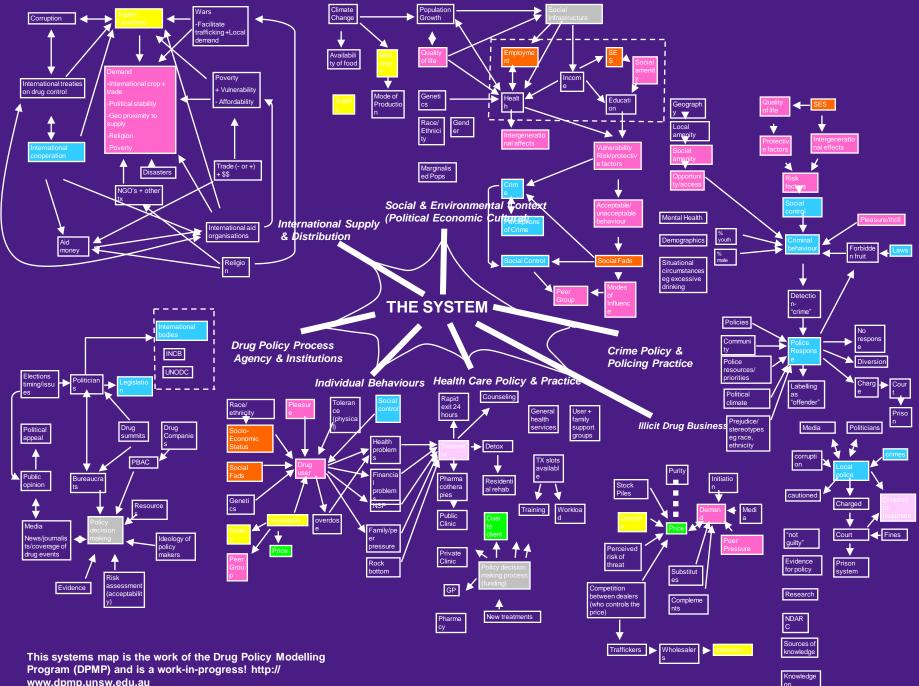

- Abstraction may mask issues
- Type of model being used
- Data
 - Availability
 - Levels of evidence
 - Biases in the data
 - Confounding factors
- Lack of transparency

How to build models

- Many different approaches
- Iterative process

Steps in model building with Qld Gov

- 1. Decide on questions to be investigated
- 2. Establish project lead & advisory group
- 3. Organise and hold focus group
- 4. Sign off on "rules of model design"
- 5. Build structure of model
- 6. Gather and input data
- 7. Test model
- 8. Run scenarios
- 9. Deliver model



System mapping

- Useful starting point for modelling is often to build a systems map:
 - -- Identifies key components of system
 - Identifies inter-relationships between key components

situations

www.dpmp.unsw.edu.au

Group exercise

- Problem: Government wants to decrease cannabis use in 14-24 year olds
- First step: Build a system map of cannabis use
- In 3 groups (8-10 people):
 - -- Identify factors that can affect cannabis use
 - Identify direction of impact (positive or negative) on cannabis use
 - Select the 3 factors your group believes to be the most important

Reflections

- Do we have consensus?
 - -Generally
 - -On the 3 most important factors
- Based on your systems maps:
 - —Which if any of the important factors are *actionable* by government?
 - -What is the fit between where activity is *currently* directed and where activity *should* be directed?
 - —Are there areas you need more detailed understanding of the likely consequences of intervention and/or which interventions would be most effective?

What could be modelled?

- Likely impacts of 3 scenarios:
 - -Provision of new media campaigns
 - -Expansion of cannabis treatment
 - Increased use of sniffer dogs to increase detection of cannabis use

System map to modelling

Building a system map:

- Can help ensure all possible influences have been identified
- Illuminates differences in understanding
- Permits focus on factors of most importance and factors which are actionable by government
- Helps set boundaries
- Facilitates model building and analyses

Modelling the economic consequences of cannabis policy options

- The project
- The method
- The issues

Advocates of legalisation argue that criminal status:

- encourages criminal activity,
- · increases contact with illicit drug sellers,
- leads to criminal records/penalties
- results in taxation losses, and
- increases the costs of enforcement

Advocates of total prohibition argue that it:

- · leads to lower consumption of cannabis,
- results in better health status,
- $\cdot\,$ decreases illegal activities r/t cannabis and
- improves productivity of society
- Others
 - recognise the limitations of existing data

Context

Cannabis is the most commonly used illicit drug but:

- Policies vary across jurisdictions
- Arguments for legalisation
- Arguments for stricter enforcement of laws

Arguments based on:

- Number of users
- Health outcomes
- Crime
- Emotive arguments
- Loss of taxation

Need for a systematic assessment of harms and benefits of potential policies

How?

- Static model
- Cost benefit analysis
- Comparing three legislative frameworks

What is a CBA?

- Form of economic evaluation
- Measure inputs and outcomes in dollars
- Systematic approach
- Societal perspective (CJS, health, individual, education, productivity....)
- Addresses the question of whether the program/ policy is of value to society

Three policies

1. NSW policy (2006/07)

- -Cannabis illegal with cannabis cautioning
 - Court, police and corrections data
 - Magistrates Early Referral into Treatment (MERIT)
 - Treatment for dependency
 - Mental health and physical health psychosis, low birth weight, accidents
 - Prevention programs
 - Use of cannabis
- 2. NSW with civil penalties

Three Policies

- 3. Legalised regulated framework
 - -Rates of use from NDSHS
 - Q: "if cannabis were legal to use, would you" analysed by current use pattern, and age
 - —Rates of dependence f(rates of use)
 - Costs of enforcing laws: intoxication, proof of residency, restrictions on locations of use, driving restrictions
 - —Impact on CJS ↑ (MERIT, other offences)
 ↓(cannabis use offences)

Three Policies

- 3. Legalised regulated framework
 - <u>Market restrictions</u>: quality, potency, price, hours, monopoly retailer, licensed growers, quantity sold per occasion, training for sellers, no advertising or promotion, hours of operation
- Education / prevention programs
- Additional treatment

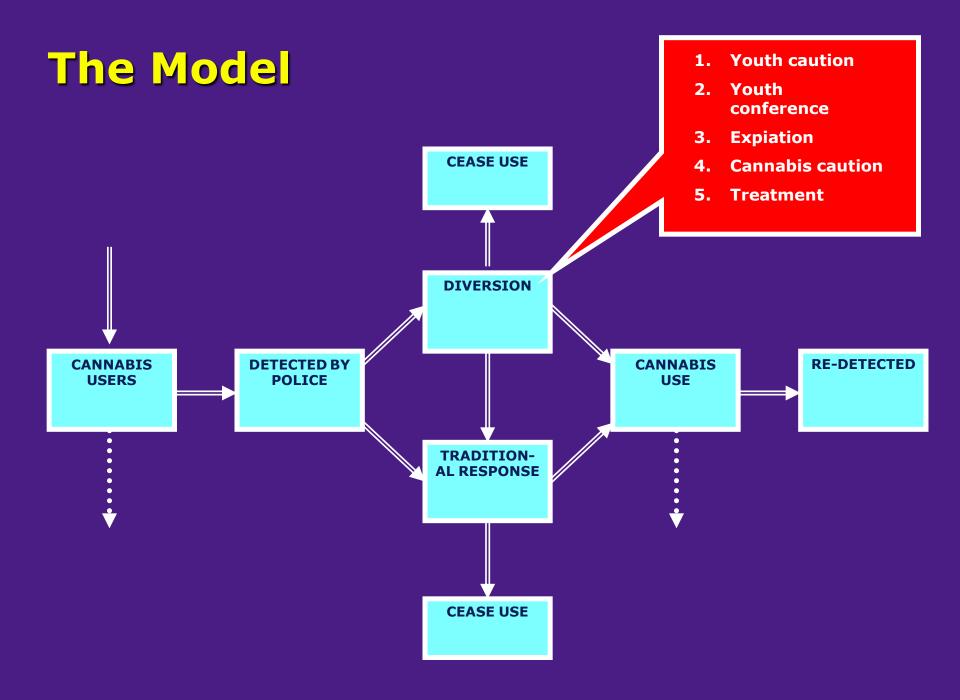
Issues

- Estimating costs for the regulated model
- Estimating the benefits

What are they and how do you value them
Negative impact of a criminal record
Sense of wellbeing from using cannabis

The Cannabis Diversion Model

- System dynamics model
- Aimed to stimulate and support policy debate around plausible policy options for improving cannabis diversion
- Devised firstly as a national prototype
- Now being adapted with Qld Health and Police to increase understanding of system and explore policy scenarios of interest



Context

- Expansion of diversion programs for drug offenders
- Evidence that 'diversion' can have productive and counter-productive impacts, particularly for cannabis users
- Issue: how to improve the design of drug diversion systems and facilitate best possible outcomes?

Features of the model

- National system
- Youth and adult system

Outputs:

- Number and type interventions
- Number of repeat offenders
- Number of "successes"
- Cost to system

Scenarios

- Scenario 1: ↑ effectiveness of diversion
- Scenario 2: Diverting all 1st time offenders
- Scenario 3: Diverting all 1st time offenders + ψ effectiveness of diversion
- Scenario 4: Widening net
- Scenario 5: Widening net plus ↑ diversion
- Scenario 6: No diversion

Scenario 1, 2 and 3: Model Outputs

	↑ Effect	↑ Diversion	↑ Diversion plus ↓ Effect
No. interventions	- 1,473	-1,327	+ 888
Multiple detections	- 6,415	- 1,808	+ 2,611
Successes	+ 7,273	+ 6,475	- 4,397
Cost (million)	- \$1.13	- \$4.59	- \$2.87

Scenario 4, 5 + 6: Model outputs

	Widen net	Widen plus ↑ diversion	No diversion
No. interventions	+ 28,117	+ 25,583	+ 2,481
Multiple detections	+ 16,482	+ 12,991	+ 6,302
Successes	+ 77,325	+ 89,740	- 12,243
Cost (million)	+ \$18.63	+ \$10.02	+ \$8.62

Policy implications

Model suggests:

-ought to *continue* diversion

—could improve outcomes and reduce costs through ↑ diversion of first timers

-should avoid net widening at all costs

Modelling implications

- Cannabis Diversion Model showed:
 - It is possible to model the cannabis diversion system
 - -Modelling can provide a tool to test scenarios
- But also showed need to *tailor* model to context
- Stage 2: Building Model of Queensland Cannabis Diversion System with Qld Health and Police

Conclusion

- Modelling can be a useful tool for informing cannabis policy to:
 - Facilitate communication
 - Combine existing knowledge
 - Explore scenarios
- Multiple approaches optimum approach dependent upon:
 - Aims/question of interest
 - Data availability
 - How much time you are willing to invest
 - Skills of researchers/modellers

